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Abstract—This paper presents a novel augmented reality (AR)
interface for the visualization and directed control of robot skill
Learning from Demonstration (LfD). This system is designed for
use with the Concept-Constrained Learning from Demonstration
(CC-LfD) algorithm for general robotic arm manipulation tasks,
in which trajectories in an LfD system are subjected to various
constraints during the learning process to ensure that the desired
skill is learned properly. This system provides an interactive
visualization of observed and learned robot trajectories, as well
as the active predicate constraints applied for CC-LfD. In this
paper, we describe current work on a system for helping users
give improved trajectory demonstrations using AR visualizations
of constraints, as well as a planned human subjects experiment
to evaluate the usefulness of this system. Additionally, we discuss
future extensions of this work involving using an AR interface
to modify existing trajectory demonstrations.

Index Terms—Learning from Demonstration, Augmented Re-
ality, Human-Robot Interaction

I. INTRODUCTION

Robot skill Learning from Demonstration (LfD) is a broad
collection of techniques that involve robots learning skills and
behaviors from a set of ‘ground truth’ human demonstrations
[2] [12] [13]. These demonstrations typically take the form
of guiding the robot through the desired task, from an initial
state to a goal state, either physically, in the case of kinesthetic
LfD, via teleoperation, or in simulation. Alternative terms for
LfD common in robotics literature include programming by
demonstration [3], apprenticeship learning [1], and human-
agent transfer [14].

LfD is an alternative to manual specification of the skill
to be learned, either via explicit trajectory programming or
manual tuning of an objective function. This allows robots to
learn tasks without requiring expert knowledge of program-
ming and the specific robotic system, thus allowing for lay-
users to teach a robot successfully. Despite these prominent
advantages, LfD is prone to a few different classes of issues
related to practical use. First, the technique tends to suffer from
a lack of robustness to alterations in start conditions i.e., it
suffers from overfitting. This problem is hardly unique to LfD
among robotic control techniques, whether they are learning
based or purely analytical. Stemming from this overfitting
also comes an oversensitivity to side-effects and unintended
behaviors deleterious to the task being learned, especially
when poor quality demonstrations are included.

Fig. 1. Sawyer robot manufacturing arm being guided through a kinesthetic
demonstration of a sample cup-pouring manipulation task for use in CC-LfD.
Credit Mueller et al. [10]

To combat the negative effects of non-perfect demonstra-
tions, Mueller et al. [10] devised an algorithm known as
Concept-Constrained Learning from Demonstration (CC-LfD).

The CC-LfD algorithm proceeds thusly:
• Multiple trajectories are gathered from human kinesthetic

demonstrations, with annotated human-defined predicate
constraints present along all or part of the trajectories.

• The trajectories are sequenced and grouped into
keyframes after undergoing Dynamic Time Warping
(DTW) [15] to align the time-series data of demonstra-
tions given at differing speeds.

• Keyframes for the learned skill are modeled generatively
with Gaussian Kernel Density Estimation [4] from the
demonstrated training data.

• Final trajectories are created from sampled points within
the learned keyframes, while rejecting any such points
that violate any of the applied constraints.

CC-LfD demonstrates significant improvement in learned
skill accuracy and convergence over standard kinesthetic LfD.
Assuming appropriate constraints are selected, the algorithm
guards against errors in demonstration and provides an addi-
tional layer of concept modeling on-top of what is typically a
fairly rigid set of motion primitives.

However, as was stated prior, one of the goals of LfD as
a technique is to allow lay-users to easily and effectively
program a robot without requiring detailed knowledge of
programming or the robot system in question. To this ideal, the



end-to-end CC-LfD system is currently underpowered. Con-
cept constraints take the form of pre-programmed predicates
involving some subset of the robot’s state space. These con-
straints are defined beforehand programmatically, and then are
applied to a trajectory live as it is being demonstrated. Since
there is no visualization of these constraints, the process of
applying them while simultaneously providing a demonstration
is unintuitive and difficult. What’s more, validating constraints
and learned trajectories is arduous and cannot be accomplished
live, or within the context of the robot’s environment.

To solve these issues, we are developing a novel augmented
reality (AR) interface for conducting CC-LfD. This interface
provides a visualization of demonstrated or learned trajecto-
ries, along with their constraints, overlaid onto the real world,
allowing a user to easily contextualize the constraints and
visualize if they are broken or satisfied in real space.

The full AR for CC-LfD system will also include the
abilities for a user to edit constraints, edit where constraints
are and are not applied, edit keyframes, and define brand new
constraints from a set of parameterizable presets. The goal of
our integration of AR visualization into the CC-LfD system is
to make CC-LfD user-friendly and powerful by helping users
give properly constrained demonstrations to a robot.

II. RELATED WORK

Commercial augmented reality headsets for development
have recently become available for widespread research use,
with the Microsoft HoloLens and Meta 2 headsets releasing to
developers in 2016, and the Magic Leap One releasing in 2018.
In that time since these headsets have been made available,
there has been much research conducted into AR applications
for robotics. One theme that has been researched in this
space with particular relevance to our AR for CC-LfD system
is the visualization of robot trajectories or motion plans.
This concept has been applied both to manufacturing robots
[11] and flying mobile robots [16]. AR has also successfully
been utilized to create user-interfaces to aid in the explicit
programming of robot trajectories by projecting constraint data
onto the real world space [5] and to display internal robot state
for understanding and debugging of a multi-robot system [6].

Despite this widespread recent adoption of AR for human-
robot interaction (HRI) and robot teleoperation, there has to
this point been a general absence of research on AR interfaces
for Learning from Demonstration. There are a couple of
systems which utilize AR headsets as a tool in LfD or LfD-
like contexts, but they differ substantially in their approach
and purpose. Li et al. [8] implemented a system that allows
a user to guide a haptic controller to perform teleoperated
programming by demonstration while wearing an AR headset
that provides a visualization of environmental obstacles to be
avoided. Meanwhile, Liu et al. [9] propose a system to use an
AR headset as a data-overlay, displaying relevant high-level
state and action information in an interpretable, interactive data
structure known as a Temporal And-Or graph (T-AOG).

No system currently exists that fills the role intended by the
AR interface described in this paper. Our goal in developing

AR for CC-LfD is to provide an intuitive in-place visualization
of the robot’s internal state and learning process in addition to
serving as a tool to positively augment that learning process.
We believe AR is uniquely suited to improve LfD by both
helping a user understand what trajectories are needed to
help the robot learn the skill properly and displaying this
information directly in the physical space occupied by the
human and robot, a factor which has been shown to lead to
safer human control of robots [7].

III. INITIAL INTEGRATION OF AR FOR CC-LFD

In this section, we describe our initial implementation and
a proposed experiment for integrating AR into CC-LFD.

A. Implementation

Our initial implementation is designed in order to facili-
tate improved LFD trajectory demonstrations with predefined
annotated constraints. To do this, we propose to create AR
visualizations of applied constraints that are projected onto
the space in which a user gives a sample trajectory. These
constraints will initially take two forms: height constraints and
rotational constraints.

Height constraints correspond to a limit on the height that
the robot should reach while performing a task. This could be
important in tasks such as a robot transporting a fragile object
that would break if dropped far from the ground. Rotation
constraints correspond to a limit on the rotation of the robot
away from a given reference point with respect to two of the
axes of rotation. This constraint can be used in situations such
as a robot transporting a cup of coffee. In this case, the degrees
of pitch and roll of the cup should be limited, but yaw is
permitted. Sample visualizations of these constraints applied
to recorded robot trajectories are shown in Fig. 2 and Fig. 3.

These constraints are applied to the position and orientation
of the robot’s end effector as a demonstration is given.
An applied height constraint will appear as a virtual plane

Fig. 2. Visualization of a height constraint, along with a rotational constraint,
active at a keyframe (inside the red box). The height constraint is displayed
as a purple plane, and the rotational constraint is displayed as a purple cone.
The selected trajectory keyframe node is highlighted in green, indicating no
violations.



Fig. 3. Visualization of a rotational constraint active at a keyframe, displayed
as a purple cone. The selected trajectory keyframe node is highlighted in
red, indicating a rotational violation. This is consistent with the visualization
where the node’s leg points outside of the cone.

rendered to demarcate the out-of-bounds barrier above which
the constraint will be violated. (Fig. 2) An applied rotational
constraint will appear as a cone around the end effector’s
current position, with rotation outside of the allowed bounds
for the two relevant axes causing the end effector to point
outside of the cone. (Fig. 3)

These constraints will appear only when users mark them
active (e.g., the robot only needs to worry about holding the
cup of coffee upright after the segment of the skill in which
it picks up the cup). Users will be able to toggle predefined
constraints as active or inactive through using a button on the
robot’s arm. If the state of the end effector violates any active
constraints, the violated constraint(s) will be highlighted in red
and additional visualization will notify the user that there are
currently violated constraints.

B. Experiment

In order to evaluate the usefulness of our system, we
propose the following experiment.

1) Experimental Scenario: We will have a series of tra-
jectories without constraint annotation, along with a set of
pre-defined constraints, loaded onto a Sawyer robot arm for
a complex manipulation task in which precise selection and
placement of constraints is necessary to ensure completion
(e.g., retrieving an object in a highly cluttered environment,
where the arm must not collide with a number of obstacles).
The pre-loaded trajectories, though individually successful,
will generate invalid trajectories when combined in an LfD
model due to their high variance, leading to task failure. The
participant’s goal will be to successfully demonstrate a single
constraint-annotated trajectory for the task using the given
constraints, so that the pre-loaded trajectories are repaired and
the task completes successfully after running CC-LfD.

After the participants are briefed on the intended task, the
constraints available to them, and how to perform a kines-
thetic demonstration, they will proceed to deliver constraint-
annotated demonstrations under three experimental conditions

presented in a random order, differing in the interface for
visualizing constraints made available to them. Following the
completion of all three trials, they will be presented with a
second, similar manipulation task to demonstrate a constraint-
annotated trajectory, for which they will be provided with an
interface of their own choosing from the previous conditions.
Each interface condition is described below.

2) Condition 1: No Visualization: In this condition, the
participant will have only the verbal description of each of
the pre-built constraints available to them. They will then
proceed as normal in standard CC-LfD, pressing buttons on the
robot arm’s cuff to start and stop the application of individual
constraints. This condition is analogous to the current state of
the art interface for CC-LfD.

3) Condition 2: 2D Visualization: In this condition, the
participant will be given a visualized representation of each
of the pre-built constraints overlaid on a simulated robot arm
on a 2-dimensional screen (a monitor or tablet) that they will
have constant access to throughout the condition. They will
apply constraints as normal in CC-LfD.

4) Condition 3: AR Visualization: In this condition, the
participant will have access to the AR for CC-LfD interface.
They will wear a Microsoft HoloLens headset, allowing for
visualization of constraints holographically overlaid on the
robot arm. They will apply constraints as normal in CC-LfD.

5) Evaluation and Hypothesis: We propose to evaluate the
interfaces on two metrics - their ability to induce proper
concept-annotated demonstrations that successfully complete
the task, and their perceived usability and user-friendliness. To
accomplish this, we will structure the evaluation as a hybrid
between-subjects/within-subjects study, where each participant
completes each experimental condition in a random order,
but where objective data on task completion accuracy is
only considered from the first condition seen, in order to
guard against the significant carryover effects stemming from
repeated performance of the task.

In addition to the task accuracy data collected, a series of
short surveys following each trial and a longer exit survey
involving comparison of the conditions will provide informa-
tion about the perceived usability of each interface. Recording
which interface participants choose to use for the second,
similar task will provide a more concrete indication of which
interface is preferred.

Our hypothesis is that Condition 3 will have the highest
scores both for accuracy and perceived usability, followed
by Condition 2 for both metrics, followed by condition 1
for both metrics. This would demonstrate not only that the
AR interface for CC-LfD is more usable for a lay-user than
existing interfaces, but also that an augmented reality interface
provides additional benefits to understanding and algorithm
success on top of visualization with a 2-dimensional screen.

IV. FURTHER EXTENSIONS

In further extensions of this work, we are developing the
ability for users to modify existing trajectories and constraints
using our AR visualizations. The in-place context provided



through the use of AR would prove highly useful in this
regard. First, we will allow users to edit where constraints are
and are not active on a constraint-annotated trajectory within
the AR interface. This can be accomplished by giving the
user the ability to indicate starting and ending keyframes for
any constraints loaded in for the current learning instance.
The user will also be able to parametrically edit any of the
constraints loaded in, as well as define new constraints via a set
of constraint predicates and add these to an existing trajectory.

Second, users will also be capable of editing trajecto-
ries themselves, demonstrated or learned. This will be done
through users selecting virtual spheres marking keyframes
of an existing trajectory, then dragging and rotating them
according to the new desired position and rotation. Other
nearby keyframes in the trajectory will be smoothed with the
new keyframe position. Users will also be able to visualize
constraints and constraint violations during this step if desired.

These two tools will allow users to correct and modify
existing trajectories while visualizing desired constraints in
order to ensure that the robot learns the skill in the manner
desired, thus adding an additional layer of utility to the
interface.

V. CONCLUSION

In this paper, we presented our work on a novel in-
terface for conducting Concept-Constrained Learning from
Demonstration (CC-LfD) utilizing the Microsoft HoloLens
augmented reality (AR) headset. We described a proposed
human user study to evaluate the success of this interface
over alternative interfaces for the CC-LfD algorithm. We
additionally described proposed additions to the end-to-end
AR system to achieve greater usability, verifiability, flexibility,
and capability. If successful, this interface will demonstrate the
value of AR interfaces for the broad techniques encompassed
by robot skill Learning from Demonstration, as well as for
human-robot interaction as a whole.
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