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ABSTRACT
The state-of-the-art robot teleoperation through Virtual Reality
relies on setups that use external static RGB-D camera(s) to recon-
struct the remote environment. The resultant point cloud of objects
of interest might be distorted depending on the lighting conditions
or occluded by other objects and the robot. This complicates the
grasping and manipulation of these objects as the operator cannot
refine the visualization of distorted and occluded parts. We suggest
that mounting the RGB-D camera on the robot allows the opera-
tor to visualize and understand the remote scene better, resulting
in higher teleoperation performance. Since the in-hand camera is
likely to be closer to the area of interest than an external static cam-
era we supplement the visualization with the OctoMap to improve
the overview of the remote scene. We encourage readers to view
the video demo at: https://youtu.be/3vZaEykMS_E.

1 INTRODUCTION
As consumer-grade Virtual Reality (VR) technologies have become
more accessible in the last decade, more researchers have started
designing robot teleoperation interfaces around them. VR enables
more immersive and intuitive human-robot interaction making
remote task completion more efficient and safe. Currently applica-
tions of VR teleoperation include: disaster relief [14], surgery [1],
exploration [16], and learning by demonstration [18].

VR teleoperation interfaces work efficiently when used with
RGB-D cameras in the slave site providing point cloud representa-
tion of the robot’s workspace [8, 10, 11]. The VR headset provides
the operator with the depth perception through binocular vision.
This is commonly achieved by rendering the point cloud for each
eye separately.

The majority of VR teleoperation systems use a single external
static RGB-D camera directed at the robot’s workspace [6, 17, 18].
In such systems the teleoperation performance suffers from in-
complete and imperfect visual reconstruction of the remote envi-
ronment. Depending on objects’ reflectivity, geometry and overall
lighting conditions some objects may appear distorted in the point
cloud - we advise the reader to consult the [2] for an overview.
Furthermore all objects are partially self-occluded (since they are
only seen from one side) and some objects can be occluded by other
objects in a clutter or by the robot.

One solution to these problems is to mount an additional RGB
camera onto the robot’s end-effector (EE). Whitney et al, [17] used

RGB camera mounted on EE to view objects that are distorted or
occluded by the robot. The video stream was rendered on a virtual
surface attached to the virtual representation of the robot. In this
solution the grasp would have to be performed relying on the video
stream rather than the point cloud, which reduces the benefits of
the VR. Alternatively, Kohn et al [5] used multiple static RGB-D
cameras to reconstruct the robot’s workspace with less potential
occlusions. Although it greatly reduces potential occlusions it does
not eliminate them altogether. Furthermore having multiple exter-
nal cameras is not always practically feasible.

In this workshop submission, we extend existing VR based tele-
operation interfaces and propose a VR teleoperation framework
with dynamic field-of-view control. We argue that in-hand RGB-
D combined with OctoMap can allow the operator to explore the
remote scene more efficiently compared to a single static external
RGB-D camera. It should be noted that EE mounted RGB-D camera
might not be able to register the point cloud of the grasp if it occurs
very close to the camera. Therefore we propose a few grasping
methods suitable for our framework. Details of the proposed VR-
based teleoperation framework can be found in section 2. Sections
3 presents the experimental used to evaluate proposed methods.
Conclusions and future work are discussed in Section 4.

2 PROPOSED FRAMEWORK
Wepropose a few augmentations to existing VR teleoperation frame-
works that allow the operator to: 1) dynamically control of the
operator’s field of view with an RGB-D camera mounted on the
robot’s EE; 2) manipulate the virtual representation of the remote
environment using gestures; 3) grasp and manipulate objects in the
remote environment both through direct teleoperation and offline
grasp-generation.

2.1 Dynamic field-of-view control
We provide the operator with the ability to control the field-of-view
of the remote camera to reduce visual occlusions and distortions
and improve the operator’s situational awareness. We suggest that
the RGB-D camera should be mounted on a controllable link close
to the EE of the slave robot. Although EE mounted RGB visual
feedback was used in various robotics applications [7, 13, 17], to
our knowledge, there has been no research that use EE mounted
RGB-D cameras as a part of the VR teleoperation interface. Hence
we generate both the video stream that is viewed in a dedicated
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Figure 1: a) Robot is directly teleoperated in VR by dragging
the end-effector (double cameramode); b) The experimental
setup for the visualization study; c) and d) operator trans-
lates, rotates and scales the virtual representation of the ro-
bot’s workspace with gestures (end-effector camera with Oc-
toMap mode).

plane in the virtual environment and the point cloud from the same
dynamic camera.

The major differences between the EE mounted camera and ex-
ternal cameras are the level of detail and the size of the captured
area. External cameras are usually placed to maximize the overview
of the remote scene, resulting in a large but low detailed reconstruc-
tion. By comparison the EE camera provides a more detailed view
of a smaller area. We suggest that a mapping techniques such as
OctoMap [3] can be used to continuously generate a lightweight
occupancy map of the robot’s workspace to compensate for the
lack of overview in EE camera mode. In VR occupied nodes are
displayed as transparent boxes, layered over the point cloud, see
Fig. 1.{c,d}. The map is generated continuously as the operator
explores the remote environment.

2.2 Gestures-based manipulation of the virtual
scene

We propose a gesture-based human-VR-robot interface for more
efficient remote environment exploration. The interface relies on
tracking the operator’s hands and use their relative position and
orientation to manipulate the position, orientation and the scale
of the virtual representation of the robot’s workspace. This helps
the operator to navigate the virtual environment, if the operator is
uncomfortable with physicallymoving in VR (walking or crouching)
or prefers to operate sitting (to reduce physical exertion).

Gestures are inspired by VR 3D drawing tools like Tilt Brush1.
For example, to rotate the scene the operator should press both but-
tons of the left and right handheld wireless controllers and perform
rotation as if he/she is rotating a physical steering wheel. In this
case, the center of rotation is fixed to the middle point between
the operators’ left and right hands. Translating and scaling is im-
plemented similarly. Pulling and pushing the center of rotation
will pull and push all objects in the scene. Bringing arms closer or
further apart will zoom in or zoom out the area of interest. Trans-
lation, rotation and scaling interfaces can operate simultaneously.
The gesture-based manipulation of the virtual scene is illustrated
in Fig. 1{c,d}.

2.3 Grasping methods for robotics setups with
end-effector mounted RGB-D camera

The grasping with EE mounted RGB-D camera is more complicated
compared to grasping with an external camera, since RGB-D cam-
eras require a minimum distance to an object to register it as a
point cloud. If the EE mounted camera is too close to the gripper
the operator will have to grasp nearly blind. We propose three
solutions that vary in the operator’s involvement in the process,
illustrated in Table 1. We encourage the readers to view the video
demo at: https://youtu.be/3vZaEykMS_E.

2.3.1 Direct grasping. This solution is designed for direct teleoper-
ation in which the operator drags the virtual EE to control the robot
in real-time. The core idea for this solution is to perform the grasp
on a persistent segmented clone of the object of interest rather
than on the "live" point cloud. We perform a naive segmentation by
separate OctoMap chunks - i.e. all occupied contiguous OctoMap
nodes - to isolate the object. The operator indicates the object of
interest by pointing at it with a ray that extends from the operator’s
hand, illustrated in Fig. 2.a. All points contained in the isolated
OctoMap chunk are then segmented and cloned to persistent local
memory, see Fig. 2.b If the partial clone of the object is insufficient
the operator can reposition the camera and rescan adding more
points to the existing clone, as shown in Fig. 2.c,d,e. As the oper-
ator approaches for the grasp, the "live" point cloud of the object
disappears as it is too close to the camera, but the clone persists
and can be grasped, see Fig. 2.f.

2.3.2 Supervised grasping: grasp on pose. Our second solution is
to plan the grasp on the "live" point cloud offline. It is arguably less
physically demanding as the operator does not have to manually
drag the robot to the grasp pose. In Fig. 3.a the operator specifies
the position of the grasp on the "live" point cloud. The desired grasp
pose is then sent to the slave controller which proposes the grasp

1https://www.tiltbrush.com

Table 1: Task distributions across grasping methods

Grasp object Grasp pose Grasp trajectory

Direct Operator Operator Operator
Grasp pose Operator Operator Robot

Point and click Operator Robot Robot

https://youtu.be/3vZaEykMS_E
https://www.tiltbrush.com
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Figure 2: Naive segmentation and cloning of the object of
interest’s point cloud for direct grasp: a) human operator
(HO) requests the segmentation; b) the segmented clone is
created (white); c) the self-occluded part of the clone; d) op-
erator moves the camera to add missing points; e) complete
segmented clone; f) operator drags the robot to the grasp
pose;

trajectory previewed in Fig. 3.b. Finally the operator decides to
reject or accept the trajectory, shown in Fig. 3.c.

2.3.3 Supervised grasping: point and click. In our third solution we
propose to use automated grasp methods to further reduce the tele-
operation task load. The idea is only to point at an object of interest
and let the robot propose the grasp pose and the trajectory. We use
the same pointing and segmentation method as in direct grasping,
shown in Fig. 3.d except that the segmented point cloud is then fed
to the grasp pose generator. The resulting grasp pose is then passed
to the motion planner similar to the previous supervised method.
The operator previews the proposed grasp pose and trajectory, see
3.e, and rejects/accepts them, see 3.f.

3 FRAMEWORK IMPLEMENTATION
The experimental setup consisted of: the Franka Emika’s Panda
robot, two Microsoft Kinect2 RGBD cameras (for the visualization
demonstration), Intel d415i RGB-D camera (for the grasping demon-
stration), Oculus Rift VR headset with Oculus Touch controllers,
master PC, slave PC and a local Ethernet network. The general view
of the setup for the visualization demonstration is shown in Fig. 1.b
and its schematic diagram is shown in Fig. 4. The first Kinect2 cam-
era was placed two meters above the robot. The second Kinect2 or
Intel d415i were attached to the robot’s EE and pointed along the
EE.

Figure 3: Supervised grasping on pose and point and click
grasping: g) operator specifies the grasp position; h) robot
proposes a grasp trajectory; i) robot executes the trajectory;
j) the operator requests a grasp on the object; k) robot pro-
poses grasp pose and trajectory; l) the robot executes the tra-
jectory.

We ran the ROS-bridge on the slave PC to publish ROS messages
to a WebSocket and ROS-sharp on the master to read them. We
separated the point cloud into a dedicated UDP channel outside
the ROS-bridge. In our tests the dedicated UDP channel proved to
be faster than the ROS-bridge. The dedicated UDP channel only
streamed the XYZRGB part of the Pointcloud2 message.

In the visualization demonstration we controlled the robot in a
"gantry mode", similar to [12, 17]. The operator moved the robot by
dragging and rotating the virtual EE gizmo (an axes mesh attached
to the virtual robot’s EE), see Fig. 1.b. The gizmo’s change of pose
was then published in the Interoperable Teleoperation Protocol
(ITP) format, see [4],[9]. The slave controller ran the Panda robot
in the Cartesian impedance mode. A Proportional-Differential (PD)
controller created a desired Cartesian force and torque necessary
to match the current and the desired EE poses. The desired Carte-
sian force and torque were then converted into joint torques using
the Jacobian pseudo-inverse. The gains of the PD-controller for
the robot were adjusted to achieve a critically-damped response
(response time of approximately 1 second). This control mode is
also used for the direct grasping.

Furthermore we added a supervised control mode (for "grasp
on pose" and "point and click" grasping) that controlled the robot
using the MoveIt with RRTConnect planner. We define three types
of motion requests in the corresponding master GUI: "move to pose",
"move to grasp pose", "propose grasp on point cloud and move".
The "move to pose" generates a trajectory to a desired EE pose.
The "move to grasp pose" is similar to "move to pose" except it
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Figure 4: The schematic diagram of the experimental setup.

queues an additional pre-grasp pose that is offset from the grasp
pose along the grasp’s z-axis. The "propose grasp on point cloud
and move" uses the point cloud clone of the object of interest to
generate a grasp pose using the Principal Component Analysis [15].
The generated grasp pose is then processed as in "move to grasp
pose".

The virtual representation of the robot was added to the Unity
using the ROS-sharp’s URDF import feature and animated using
either the actual robot’s joint angle values (default setting) or trajec-
tory proposed byMoveIt. The Master GUI is set such that whenever
a trajectory message is received the virtual robot visualization is
toggled into preview mode. We animate the preview trajectory
state by state rather than a smooth animation. The virtual robot
animation is toggled back to real robot if the operator rejects or
accepts/ executes the trajectory.

Both Kinect2 point clouds were generated using the standard
definition - 512X424, the Intel d415i - 640X480. We ran the XYZRGB
registration on the slave PC. This simplified the point cloud and Oc-
toMap generation compared to registering on master [17], although
it does use more bandwidth. To reduce the bandwidth consumption
we cropped the point cloud to the area of interest - 0.9m X 0.6m
X 0.3m and removed all points on which registration failed. Fur-
thermore we repacked original point clouds to 15 bytes per point
(standard Kinect2 registration uses 32 bytes, Intel d415i - 24 bytes).

We visualized the point cloud using the Unity’s particle system.
Particles were animated and colored based on received point cloud
data. The segmented clone is also represented using a particle sys-
tem. We kept the segmented clone white to make it visible when
layered over the "live" point cloud.

We used the standard ROS implementation of OctoMap at and
sent the map to the master in a binary format. The OctoMap was
produced with the same point cloud that was sent to the master in

the EE frame. Note that we only detected objects that are above the
desk. For the visualization study the OctoMap resolution was set
to 0.02m. We designed a custom parser and renderer for the binary
OctoMap, that inherits from the ROS-sharp’s subscriber class. The
renderer only visualizes occupied OctoMap nodes as transparent
boxes. We did not visualize or made a distinction between free
and unknown nodes since the operator can infer that information
himself/herself. We also included the RGB video stream for the
grasping demonstration. The video stream was used to monitor the
success of the grasp. We did not include the video stream to the
visualization demonstration as we were interested in the operator’s
ability to understand the remote scene from the point cloud only.

4 CONCLUSION AND FUTUREWORK
We have proposed a Virtual Reality (VR) teleoperation framework
with a dynamic field of view control and corresponding grasping
methods. Our demonstration, see Fig. 5 have shown that compared
to external static RGB-D camera the end-effector (EE) mounted
RGB-D camera presents a more detailed visual feedback to the
user that suffers less from occlusions and point cloud distortions.
By including the OctoMap mapping we provide the operator with
an overview of the remote environment similar to additional ex-
ternal RGB-D camera at much lower communication bandwidth
consumption compared to the dual-camera setup.

The grasping with EE camera is more complicated compared to
grasping with an external camera, since RGB-D cameras require
a minimum distance to object for it to be registrable as a point
cloud. If the EE mounted camera is too close to the gripper the
operator will have to grasp in blind. We propose three solutions to
this problem that vary in the level of the operator’s involvement.
In the first solution we segment the point cloud of the object of
interest and keep it in the persistent memory, such that the grasp
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Figure 5: Operator’s views in different modes: a) and e) top camera mode - note how the robot occludes a part of the view and
the bowl shape is deformed; b) and f) end-effector (EE) camera view - the same bowl is much more recognizable; c) and h)
double camera mode - the EE camera provides a better representation of the bowl, compared to the top camera g) the edge
between the EE camera view and top-camera view, notice the difference in resolution; d) and i) EE camera mode with OctoMap
- although the bowl is no longer in the field of view, the OctoMap maintains the accurate geometrical representation.

can be performed on the segmented clone, rather than on the "live"
point cloud. In the second solution we plan the grasp on the "live"
point cloud, by specifying the desired grasp pose, which is used to
generate and preview the trajectory offline before the execution.
Our third solution builds on previous ones - instead of manually
selecting the grasp pose, we use automated grasp generation on
the segmented point cloud of the object of interest. This reduces
the physical load on the operator as he only requires to point on
the object of interest to grasp it.

There are a few challenges that need to be addressed in future
work. Although all three proposed grasping methods can bring the
robot to the grasp position the success of the grasp can only be
viewed from the video stream. It is not always obvious if the grasp
was successful. We are planning to add tactile sensors to monitor
the grasp. Manipulation of the grasped object needs to be addressed
as well, as it also cannot be viewed as a point cloud. Two potential
solutions to this problem are: use the segmented clone as a stand-in
for the object in grasp; move the RGB-D camera further from the
gripper such that the object can be viewed in grasp. Both solutions
come with certain disadvantages - the segmented clone might not
accurately represent the grasped object, especially if the object is
not rigid, meanwhile moving the camera farther from the gripper
might complicate the online trajectory generation as it needs to
be included into the Inverse Kinematics problem as a self-collision
obstacle.
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